Abstractive Multi-document Summarization with Semantic Information Extraction
نویسنده
چکیده
This paper proposes a novel approach to generate abstractive summary for multiple documents by extracting semantic information from texts. The concept of Basic Semantic Unit (BSU) is defined to describe the semantics of an event or action. A semantic link network on BSUs is constructed to capture the semantic information of texts. Summary structure is planned with sentences generated based on the semantic link network. Experiments demonstrate that the approach is effective in generating informative, coherent and compact summary.
منابع مشابه
Abstractive News Summarization based on Event Semantic Link Network
This paper studies the abstractive multi-document summarization for event-oriented news texts through event information extraction and abstract representation. Fine-grained event mentions and semantic relations between them are extracted to build a unified and connected event semantic link network, an abstract representation of source texts. A network reduction algorithm is proposed to summariz...
متن کاملOpen-Domain Multi-Document Summarization via Information Extraction: Challenges and Prospects
Information Extraction (IE) and Summarization share the same goal of extracting and presenting the relevant information of a document. While IE was a primary element of early abstractive summarization systems, it's been left out in more recent extractive systems. However, extracting facts, recognizing entities and events should provide useful information to those systems and help resolve semant...
متن کاملAbstractive Multi-document Summarization by Partial Tree Extraction, Recombination and Linearization
Existing work for abstractive multidocument summarization utilise existing phrase structures directly extracted from input documents to generate summary sentences. These methods can suffer from lack of consistence and coherence in merging phrases. We introduce a novel approach for abstractive multidocument summarization through partial dependency tree extraction, recombination and linearization...
متن کاملMulti-Document Abstractive Summarization Using ILP Based Multi-Sentence Compression
Abstractive summarization is an ideal form of summarization since it can synthesize information from multiple documents to create concise informative summaries. In this work, we aim at developing an abstractive summarizer. First, our proposed approach identifies the most important document in the multi-document set. The sentences in the most important document are aligned to sentences in other ...
متن کاملHybrid Approach for Single Text Document Summarization Using Statistical and Sentiment Features
Summarization is a way to represent same information in concise way with equal sense. This can be categorized in two type Abstractive and Extractive type. Our work is focused around Extractive summarization. A generic approach to extractive summarization is to consider sentence as an entity, score each sentence based on some indicative features to ascertain the quality of sentence for inclusion...
متن کامل